Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(16): 3499-3532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291801

RESUMO

In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.


Assuntos
Angiotensinogênio , Sódio , Camundongos , Animais , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Apetite/fisiologia , Sede/fisiologia , Hipovolemia , Astrócitos/metabolismo , Hepatócitos/metabolismo , Angiotensina II/metabolismo , Cloreto de Sódio , Água
2.
Nat Commun ; 14(1): 59, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599844

RESUMO

The aromatic side-chains of phenylalanine, tyrosine, and tryptophan interact with their environments via both hydrophobic and electrostatic interactions. Determining the extent to which these contribute to protein function and stability is not possible with conventional mutagenesis. Serial fluorination of a given aromatic is a validated method in vitro and in silico to specifically alter electrostatic characteristics, but this approach is restricted to a select few experimental systems. Here, we report a group of pyrrolysine-based aminoacyl-tRNA synthetase/tRNA pairs (tRNA/RS pairs) that enable the site-specific encoding of a varied spectrum of fluorinated phenylalanine amino acids in E. coli and mammalian (HEK 293T) cells. By allowing the cross-kingdom expression of proteins bearing these unnatural amino acids at biochemical scale, these tools may potentially enable the study of biological mechanisms which utilize aromatic interactions in structural and cellular contexts.


Assuntos
Aminoacil-tRNA Sintetases , Fenilalanina , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Halogenação , Fenilalanina/metabolismo , RNA de Transferência/metabolismo , Humanos , Células HEK293
3.
J Gen Physiol ; 155(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695813

RESUMO

Phosphoregulation is ubiquitous in biology. Defining the functional roles of individual phosphorylation sites within a multivalent system remains particularly challenging. We have therefore applied a chemical biology approach to light-control the state of single candidate phosphoserines in the canonical anion channel CFTR while simultaneously measuring channel activity. The data show striking non-equivalency among protein kinase A consensus sites, which vary from <10% to >1,000% changes in channel activity upon phosphorylation. Of note, slow phosphorylation of S813 suggests that this site is rate-limiting to the full activation of CFTR. Further, this approach reveals an unexpected coupling between the phosphorylation of S813 and a nearby site, S795. Overall, these data establish an experimental route to understanding roles of specific phosphoserines within complex phosphoregulatory domains. This strategy may be employed in the study of phosphoregulation of other eukaryotic proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fosforilação , Ânions/metabolismo
4.
Exp Physiol ; 106(5): 1263-1271, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651463

RESUMO

NEW FINDINGS: What is the central question of this study? This study presents a new model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function by administering an intragastric KCl load. What is the main finding and its importance? This new model of intragastric KCl load produces a reliable and reproducible model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function. We report unprecedented rapid changes (30 min) in ECG, blood pressure and various arterial blood analyses with this new model, providing a solid foundation for future experiments in this field. ABSTRACT: A variety of animal models have been proposed to study hyperkalaemia, but most of them have meaningful limitations when the goal is to study the effect of potassium overload on healthy kidneys. In this study, we aimed to introduce a new approach for induction of hyperkalaemia in a reliable and reproducible animal model. We used intragastric administration of potassium chloride [KCl 2.3 M, 10 ml/(kg body weight)] to male Holtzman rats (300-350 g) to induce hyperkalaemia. The results showed that this potassium load can temporarily overwhelm the renal and extrarenal handling of this ion, causing an acute and severe hyperkalaemia that can be useful to study the effect of potassium imbalance in a variety of scenarios. Severe hyperkalaemia (>8 meqiv/l) and very profound ECG alterations, characterized by lengthening waves and intervals, were seen as early as 30 min after intragastric administration of KCl in rats. In addition, a transient increase in arterial blood pressure and time-dependent bradycardia were also seen after the KCl administration. No metabolic acidosis was present in the animals, and the potassium ion did not increase proportionally to chloride ion in the blood, leading to an increased anion gap. In conclusion, the results suggest that intragastric KCl loading is a reliable model to promote rapid and severe hyperkalaemia that can be used for further research on this topic.


Assuntos
Hiperpotassemia , Animais , Arritmias Cardíacas , Hiperpotassemia/etiologia , Rim , Masculino , Potássio , Cloreto de Potássio/farmacologia , Ratos
5.
Physiol Rep ; 9(2): e14714, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463885

RESUMO

Restricting dietary sodium promotes sodium appetite in rats. Prolonged sodium restriction increases plasma potassium (pK), and elevated pK is largely responsible for a concurrent increase in aldosterone, which helps promote sodium appetite. In addition to increasing aldosterone, we hypothesized that elevated potassium directly influences the brain to promote sodium appetite. To test this, we restricted dietary potassium in sodium-deprived rats. Potassium restriction reduced pK and blunted the increase in aldosterone caused by sodium deprivation, but did not prevent sodium appetite or the activation of aldosterone-sensitive HSD2 neurons. Conversely, supplementing potassium in sodium-deprived rats increased pK and aldosterone, but did not increase sodium appetite or the activation of HSD2 neurons relative to potassium restriction. Supplementing potassium without sodium deprivation did not significantly increase aldosterone and HSD2 neuronal activation and only modestly increased saline intake. Overall, restricting dietary sodium activated the HSD2 neurons and promoted sodium appetite across a wide range of pK and aldosterone, and saline consumption inactivated the HSD2 neurons despite persistent hyperaldosteronism. In conclusion, elevated potassium is important for increasing aldosterone, but it is neither necessary nor sufficient for activating HSD2 neurons and increasing sodium appetite.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aldosterona/metabolismo , Apetite/fisiologia , Dieta Hipossódica/métodos , Vias Neurais/fisiologia , Neurônios/fisiologia , Potássio/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sódio/deficiência , Sódio/metabolismo
6.
Front Syst Neurosci ; 13: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736720

RESUMO

The literature is extensive on how hypertension affects the morphology and function of the central nervous system (CNS) and is being focused on multiple organ damage involving the kidneys, heart, endothelium and retina. Hypertension damage to the peripheral nervous system is less explored in the literature. We have previously shown morphometric alterations in large and small caliber myelinated fibers of nerves in the adult spontaneously hypertensive rat (SHR). However, the functional correlation of these findings has not been explored. We performed an electrophysiological investigation of hind limb nerves in SHR of both genders in different ages. Normotensive Wistar-Kyoto (WKY) rats were used as controls. Electrophysiological recordings and determination of motor (MCV) and sensory (SCV) nerve conduction velocity were performed in the same animals at four different ages: 5, 8, 20 and 40 weeks after birth. Comparisons were made between ages, genders and animal strain. We showed a continuous body weight increase in adult life in all animals studied. MCV got stable at 20-week old hypertensive animals and continued to increase in normotensive ones. The SCV was constant between the ages of 20 and 40 weeks old in female SHR and decreased in male SHR while it continued to increase in WKY animals. The electrophysiological investigation of the nerves in WKY and SHR from both genders and different ages, associated with morphological and morphometric data from the literature suggest that hypertension affects the nerve function and might corroborate the development of a peripheral neuropathy.

7.
Entropy (Basel) ; 20(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33265153

RESUMO

Quantifying complexity from heart rate variability (HRV) series is a challenging task, and multiscale entropy (MSE), along with its variants, has been demonstrated to be one of the most robust approaches to achieve this goal. Although physical training is known to be beneficial, there is little information about the long-term complexity changes induced by the physical conditioning. The present study aimed to quantify the changes in physiological complexity elicited by physical training through multiscale entropy-based complexity measurements. Rats were subject to a protocol of medium intensity training ( n = 13 ) or a sedentary protocol ( n = 12 ). One-hour HRV series were obtained from all conscious rats five days after the experimental protocol. We estimated MSE, multiscale dispersion entropy (MDE) and multiscale SDiff q from HRV series. Multiscale SDiff q is a recent approach that accounts for entropy differences between a given time series and its shuffled dynamics. From SDiff q , three attributes (q-attributes) were derived, namely SDiff q m a x , q m a x and q z e r o . MSE, MDE and multiscale q-attributes presented similar profiles, except for SDiff q m a x . q m a x showed significant differences between trained and sedentary groups on Time Scales 6 to 20. Results suggest that physical training increases the system complexity and that multiscale q-attributes provide valuable information about the physiological complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...